FORMULATION OF IN SITU GELLING SYSTEM FOR OPHTHALMIC DELIVERY OF ERYTHROMYCIN

Reeshanteni Balasingam*, Abdullah Khan, Rajermani Thinakaran
Undergraduate student, School of Pharmacy, KPJ Healthcare University College,
Lot PT 17010, Kota Seriemas, 71800 Nilai, Negeri Sembilan.
Email: reeshabala@gmail.com

Article History: Received on 15th June 2017, Revised on 2nd July 2017, Published on 7th September 2017

Abstract - Eye is a unique organ which exerts various limitations for the delivery of drug due to its physiology barriers. Therefore, the posterior part of the eyes remains a major concern for formulation scientists to develop ocular drug delivery system which can overcome the barriers of the eye and provide local or systemic effect with immediate or sustained release dosage forms. Conventional ophthalmic dosage forms such as eye drop, ointment and gel provide low bioavailability and less pre-corneal drug residence time due to nasolacrimal drainage of the eyes. The major challenge is to formulate a system to improve the contact time of the drug in eyes. This is achieved by in situ gel system where the drugs are incorporated with various types of polymers which exhibit solution to gel phase transition. An in situ gelling technique provides greater bioavailability by resisting ocular drainage leading to longer residence time. This paper proposes the formulation of in situ gels for effective delivery of Erythromycin used to treat conjunctivitis and to evaluate dosage form characteristic such as pH, gelling capacity, gel strength, sterility testing, drug content, in vitro diffusion study, antibacterial activity and accelerated stability studies to ensure the safety and stability of the dosage form. Hence an attempt will be made to develop novel in situ gelling systems using Erythromycin, antimicrobial agent as a promising alternative to the conventional dosage forms for the effective treatment of various eye infections.

Keywords--In situ gel; ophthalmic; conjunctivitis; Erythromycin.

I. INTRODUCTION

The cornea of the eye (Figure 1) is composed of the epithelium, endothelium, and inner stroma which act as the main barrier for the ocular absorption of drugs. The outer epithelium layer acts as a barrier for the penetration of hydrophilic drug while the inner stroma act as a barrier for the drugs which is hydrophobic. The lipophilic -hydrophilic- lipophilic nature of the tissues contributes to poor corneal penetration and permeability of drugs. Secretion of lachrymal fluids and blinking action are the natural mechanisms that prevent eyes from drying and eliminate all foreign substances being introduced into the conjunctival sac. A th usely small portion of the installed drug will be delivered to the anterior segment of the eyes whereas most of it will be lost because of spillage and drainage through the nasolacrimal duct. Lisa (2015) stated that only less than 5% intraocular bioavailability is achieved by the common topical ophthalmic dosage forms. Therefore, the major challenge for the formulator is to develop an ophthalmic novel drug delivery system without damaging the natural mechanism and barriers of the eyes at the same time achieving effective ocular drug concentration at the site of action while improving the residence time of the drugs in eyes.

II. LIMITATIONS OF CONVENTIONAL OCULAR DOSAGE FORMS

Commonly the conventional ophthalmic drug delivery system is available in the form of eye drops, ointment, suspension and ocular inserts. Eye drops are mostly being prescribed out of all marketed ocular preparation; in fact, almost 90% of the ophthalmic formulations are available in the form of eye drops (Sampathet.al, 2012). Eye drops are relatively easy to be introduced into the eyes for various eye diseases. However elimination and rapid spillage of the drug from the precorneal area of the eyes upon installation due to nasolacrimal drainage leads to poor bioavailability and low therapeutic effect of the drug. Repeated installation of high concentration drug will result in several side effects and damage the eye tissues. Frequent blinking of the eyes also drains out the drug at a higher rate.
Furthermore, reduces.

Himanshu

s-

eparation

Erythromycin

Thus, the present study

available as 0.5%

established based on the pharmacological studies and

bacteria by reversibly binding to

Erythromycin inhibits the cell membrane of the

allergy

commonly used as alternatives to patients having

problem.

an antibacterial

conventional

delivery

reported by any researcher on the

Dhole Shashikant, 2014

demonstrate prolong

be

between

such as pH, temperature, solvent exchange and ions

Gupta

due to

from solution to gel upon insertion into the cul

A novel drug delivery system with the use of

drawbacks of conventional

ocular

are

inserted

widely accepted by patients because

advance

greasy preparation and sticking of the eyelids which

bioavailability

the eyes and mostly not more than 2% of the

the topical ophthalmic medication only

Gourav

summarised

in Table 1.

III. IN SITU DRUG DELIVERY SYSTEM

A novel drug delivery system with the use of natural or synthetic polymers that undergoes phase transition from solution to gel upon insertion into the cul-de-sac due to the response of the physiochemical nature of the ophthalmic fluids (Gourav Rajoria and Arushi Gupta, 2012). Gelation is triggered by few parameters such as pH, temperature, solvent exchange and ions which will form achemical or psychical cross linking between the polymeric materials used resulting in the formation of gel. The gel formed must be able to withstand the shear forces in the cul-de-sac and must be less affected by corneal drainage. The gel forming polymers act as rate controlling polymers which demonstrate prolonged drug release and improve the ocular bioavailability of the drug (Mane Kirti and Dhole Shashikant, 2014). There are no limitations reported by any researcher on the in situ gels as drug delivery system however, the high viscosity of the gel may cause blurred vision compared to the conventional ocular dosage forms. Therefore, the primary objective of the proposed study is to develop an antibacterial in situ ophthalmic gel as a less viscous free flowing fluid to overcome this problem. Erythromycin is a wide spectrum antibiotic under macrolide group of antibiotics which is commonly used as alternatives to patients having allergy to penicillin. Erythromycin is used to treat ocular bacterial infections such as trachoma and conjunctivitis caused by Staphylococcus aureus, Chlamydia trachomatis and Neisseria gonorrhoeae. Erythromycin inhibits the cell membrane of the bacteria by reversibly binding to 50s subunit of ribosome without damaging the nuclei acid synthesis (Kaul Shweta et al., 2012). This drug is stable and well established based on the pharmacological studies and available as 0.5% ophthalmic ointment in the market. Thus, the present study was aimed at developing an in situ gelling system for the effective delivery of Erythromycin with increased bioavailability through prolonged contact time.

IV. BENEFITS OF IN SITU DRUG DELIVERY SYSTEM

Compared to other ocular dosage forms, in situ drug delivery system has numerous benefits over the conventional ophthalmic dosage forms such as promotes bioavailability, less affected by nasolacrimal drainage thereby reduces absorption into the eye tissues and prevents the systemic adverse effect. This novel drug delivery system combines both solution and gel which ease the introduction of formulation into the eyes and increases patient compliance (Figure 2). Furthermore, reduces the frequency of dosing as the in situ gel retains the contact time of drug in the eye and effective therapeutic will be achieved. According to Himanshu Gupta et al.,(2015) the plain eye drop of Sparfloxacin eliminated quickly from the corneal surface of the eye compared to the Sparfloxacin developed as in situ gel formulation which showed sustained release of drug for a longer period and enhanced bioavailability (Figure 3).

V. APPROACHES FOR IN SITU DELIVERY SYSTEM

In situ gel formulation will be developed as less viscous free flowing liquid when exposing to the stimuli’s, solution converts into viscoelastic gel. Various approaches for achieving in situ gelling system are pH dependent system, ion dependent system, and temperature dependent system. Formulations based on the different approaches are:

A. pH dependent system

The pH changes trigger the formation of the solution to get such systems are formulated using pH sensitive polymers. When the sterile solutions are exposed to the pH of the eyes it undergoes aphase transition from solution to gel. Example of pH dependent polymers are Carbopol or Carboxer its derivatives. As the external pH increases the hydrogel swells and convert to form gel.

B. Temperature dependent system

Thermal dependent system is a great approach of the gelling system because the gelling is achieved without any great difficulties and easy to control. The mechanism of gelation occurs as the external temperature increases, the polymers undergo desolvation, increases micellar aggregation and increases polymeric network entanglement to form a highly viscous gel. Temperature sensitive polymers are Poloxamer , Chitosan and Hydroxypropyl Methyl Cellulose (HPMC).

C. Ion dependent system

Phase transitions from solution to gel occur when exposed to the changes by ionic strength. Gelation is triggered when the anionic polymers comes in contact with the cations present in the tear fluid, interaction takes place, and it converts to form gel.
Gelrite and Sodium Alginate are the examples of ion sensitive polymers. Figure 4 shows the development of in situ gel based on the ion dependent system, where the gelatin gum (gelrite) undergoes a phase transition from solution to gel when in contact with artificial tear fluid.

Following are the various approaches as reported in the literature:

- **Eaga Chandra Mohan et al., (2009)** prepared and evaluated in situ gel for Ciprofloxacin, an antibacterial agent for the treatment of ocular bacterial infections.
- Such as dacryocystitis, bacterial conjunctivitis, corneal ulceration and blepharitis by using 3 different polymers which are pH-triggered, temperature reversible and ion activated in situ gellation. Carbopol 940 in combination with HPMC, Pluronic F-127 (14%) in combination of HPMC (1.5%) and Gellan gum was used as different approaches in the gelling system. Formulation obtained was stable, non irritant, therapeutically effective and provide sustained release of the drug for 6 hours. Thus, the developed system can be a replacement for conventional eye drops.
- **SindhuAbrahamet al., (2009)** prepared and characterized ion-activated in situ gel with antibacterial agent, Ofloxacin. Polymers used were sodium alginate in combination with HPC (Hydroxy Propyl Cellulose). In vitro drug release, studies showed that Alginate or HPC solution alone was poor in retaining the drug compared to the alginate/HPC solution which showed the optimum result. The formulated in situ gel achieved prolong drug release over a period of 8 hours, reduced frequency of drug administration, improved patient compliance and can be served as an alternative to the conventional ophthalmic drops, economically and industrially orientated.
- **Yuejial Liuet al., (2010)** designed ion-activated in situ gelling system for ophthalmic delivery of marine. Gelrite, alginate and gelrite / alginate was used and evaluated for rheological properties. Excellent gel strength was achieved by the mixture of 0.2% Gelrite and 0.6% alginate solutions which provide a better capability to retain drug in both in vitro release and in vivo pharmacological studies. The tested formulation was found to be non-irritant in the ocular irritancy test. The authors concluded that gelrite/alginate mixture can be used as an in situ gelling vehicle to enhance ocular retention.
- **Kavitha and Rajas (2011)** developed controlled release in situ ophthalmic gels of Levoloxacin hemihydrates by using gelrite for the treatment of various ocular bacterial infections. Six different in situ gels were prepared by dispersing gelrite with increasing polymeric concentration. The in situ gel was tested for clarity, pH, drug content, sterility test, gelling property, rheological studies, ocular testing and in vitro drug release studies. The developed formulation showed sustained drug release for 8 hours, optimum uniformity, and spreadability. The formulation was found to be improved bioavailability and increased pre-conveal drug residence time.
- **Abdullah Khan et al., (2013)** designed in situ gelling system for Gatifloxacin, an antibacterial agent using hydroxypropyl cellulose and sodium alginate as the polymers to increase the pre-conveal resident time and ophthalmic bioavailability of the drug. The designed in situ gel was evaluated for various physical parameters such as pH, viscosity, drug content, clarity, sterility, and in vitro drug release. They observed the formulated gel was transparent, good spreadability, pH range of 6.8 to 7.1 and uniform in consistency.

Result found was increased in the concentration of the polymer sodium alginate, therefore sustained drug release from the formulation for up to 12 hours. Thus the formulation of ophthalmic in situ gel for Gatifloxacin improves the bioavailability of the drugs on the precorneal area.
- **Bhatia et al., (2013)** developed in situ gels based on thermo-reversible poloxamer 407 polymer along with different mucocidal polymers such as sodium carboxy methyl cellulose (Na CMC), HPMC K100Lvp, and polyvinyl pyrrolidone (PVP) K30. Cold method was used to formulate the thermo-reversible mucocidal gels of Azithromycin. The in situ gels were evaluated for ocular irritation, sterility, stability, antimicrobial activity and in vivo corneal permeation studies. They found that the in situ gel can be safely installed into the eye without any adverse effects; enhance stability and good antibacterial activity compared to the marketed formulation of Azithromycin.
- **Rathod and Patel (2013)** designed and tested ion sensitive in situ gelling system for antibacterial agent Norfloxacin, by using Sodium alginate in combination with Hydroxypropyl Methyl Cellulose (HPMC K4M) which acted as a viscosity enhancing agent and gelling agent. The formulated gel was tested for viscosity, gelling capacity, antimicrobial activity, stability testing, in vitro drug release, ocular irritation, clarity, pH and drug content. The evaluation result obtained was satisfactory and developed was found to be therapeutically effective, stable, non-irritant, and provided prolong drug release. The authors concluded that the prepared formulation can be a viable alternative to conventional eye drops.
- **Reddy and Ahmed (2013)** formulated pH based ocular in situ gelling systems with Sparflaxacin by utilizing HPMC and carbopol as the gelling agents. The developed gel was examined for drug content, gelling strength, clarity, viscosity, in vitro drug release study and in vivo using animal models for antibacterial properties. The results obtained were optimum and formulated in situ gel can be designed to improve patient compliance and
as substitute to the marketed conventional drug delivery system.

D. Designing In Situ gelling System Of Erythromycin

In this research, in situ drug delivery system will developed based on 2 approaches namely ion dependent and temperature dependent system using polymers such as Chitosan, Sodium Alginate and Hydroxypropyl Methyl Cellulose (HPMC). Drug and polymers along with the excipients will be characterized for their identity and purity. The polymeric solution will be prepared by dispersing Chitosan, Sodium Alginate and HPMC into the solvent at various compositions by continuous stirring using an magnetic stirrer to prevent excessive formation of lumps. Erythromycin powder (0.5% w/v) will be dissolved in diluted acetic acid and phosphate buffers 0.1 N NaOH will be used to adjust the pH 6.5. Benzalkonium chloride (0.02% v/v) will be added to the solution as a preservative agent. Thus, the drug Erythromycin will be incorporated with the various polymeric solutions and purified water will be added to make up the final volume to 100ml under constant stirring to obtain uniform solutions. The prepared solution will be filtered using 0.2μm filter paper and sterilized in an autoclave at 121°C and 15 psi for 15 minutes (Abdul Malik and Satyananda, 2014).

VI. EVALUATION OF IN SITU GELLING SYSTEM

The followings are the evaluation parameters for Erythromycin in situ gel formulation:

- Visual appearance and clarity: The prepared gel formulation will be checked for clarity and appearance by rotating the solution in a glass vial and inverted under the light behind the black and white background to test for its colour, odour and inverted twice to detect any presence of suspended particulate (Abdullah Khan et al., 2013).
- pH measurement: pH of the formulations will be measured using digital pH meter.
- Gelling capacity: Determination of in vitro gelation is vital to identify the prepared formulation are ideal to be used as in situ gels. Gelling will be determined by placing a drop of the polymeric solution incorporated with the drug in different ratios into the 1ml freshly prepared artificial tear fluid which is calibrated at 34°C to trigger gelation. The time taken for the solution to convert into gel and formed gel to dissolve will be measured (Abdul Malik and Satyananda, 2014).
- Rheological property: Viscosity is a significant element to determine the sustained release of the drug in the eyes. The Erythromycin solution will be placed in the prepared artificial tear fluid and allowed to form gel. Then, the formed gel will be tested for viscosity by using Brooke field viscometer RVT model (Sindhu Abraham et al., 2009).
- Sterility study: Sterility parameter is an important key of evaluation because ocular preparations are intended to be sterile dosage forms. The test for sterility will be carried out aseptically according to British Pharmacopoeia by inoculating 2ml of the sample formulation to fluid thioglycolate medium (20ml) and soyabean casein digest medium (20ml). Both mediums will be incubated for 14 days, fluid thioglycolate medium at 30-35°C and soyabean casein digest medium incubated at 20-25°C to identify the culture of anaerobic and aerobic microbial growth (Abdullah Khan et al., 2013).
- Stability study: Prepared sample will be subjected to stability studies, stored at an unaccelerated temperature such as 40°C ± 1.0°C and 75% RH to evaluate the end of storage period for clarity, viscosity, pH, drug content, gelling capacity and in vitro drug release (Mahesh NS and Manjula BP, 2012).

- In vitro drug release study: In vitro drug release of Erythromycin will be determined by diffusion technique using the classical laboratory method with simple modifications of the open ended glass tube. A cellophane membrane is tied to the open end of the cylinder which resembles as donor compartment. 1ml of the prepared formulation will be placed in the donor compartment over the diffusion cellophane membrane which will be pre soaked in the diffusion medium. The diffusion cellophane membrane act as eye tissues where the diffusion of the drug take place and the entire surface of the membrane will be kept in contact with receptor compartment containing 25ml of artificial tear fluid in 100ml beaker. The medium in the receptor compartment is stirred continuously with an magnetic stirrer and maintained at 37°C to ensure the medium touches the membrane constantly. 1ml of the sample from the receptor compartment will be withdrawn to analyze the drug content using UV Spectrophotometer at 285nm. The liquid withdrawn will be replaced by freshly prepared and warmed artificial tear fluid into the receptor compartment (Kaul Shweta et al., 2012).

- In vitro microbiological study: Prepared formulation will be evaluated for microbiological study to determine the antibacterial properties of Erythromycin in comparison with the existing marketed formulation against Staphylococcus aureus by using cup plate method. All procedures will be carried out under aseptic condition. 20ml of nutrient agar will be inoculated with 0.2ml of Staphylococcus aureus along with 7μl of artificial tear fluid and allowed to solidify in the petri dish. Then with the help of sterile borer, cups of 4mm diameter will be made on the solidified nutrient agar. The developed formulation (25μl) will be poured into the cups made and incubate for 24 hours to observe the zone of inhibition produced by the developed formulation the
zone of inhibition will be compared with that of marketed formulation under similar conditions (Bhatia et al., 2013).

VII. DISCUSSION
Better understanding of the limitations exerted by the anatomical and physiological barriers of the eye brings more advancement in the development of safe and effective ocular drug delivery system. Hence the focus of interest of drug delivery scientists is to overcome these anatomical and physiological barriers of the eye. In situ gels will be a promising approach to enhance bioavailability and sustained release of the drug thereby ensuring therapeutic outcome. Exploitation of the polymers for sustained release properties contributes to various advantages for in situ gelling system which overcome the limitations associated with conventional ocular preparations. The composition and ratios of the polymeric solution is vital to determine the viscosity and gelling strength of the formulation. In situ gels are biodegradable and easy to introduce into the eyes without the need to remove after the drug is completely released from the dosage form thus improves patient compliance. Sustained release of Erythromycin from the in situ gel also reduces the frequency of higher concentration of antibiotic dosing which may lead to greater systemic side effects. Besides that, the methodology adopted for the development of novel in situ gel is simple and cost effective.

VIII. CONCLUSION
In a nut shell, this study proposes the development of novel in situ gels for effective ocular delivery of Erythromycin through prolonged contact time and enhanced bioavailability. In situ gelling system has tremendous advantages over the ocular conventional dosage form. The benefits are less adverse effect, increase patient compliance, not affected by nasolacrimal drainage, increased drug contact time and reduced frequency of dosing, besides that it is easy to apply and also biodegradable. Considering all the benefits, in situ gelling system will be a viable drug delivery system for the delivery of therapeutic agents to combat various ocular diseases and serve as an alternative to conventional ocular dosage forms both therapeutically and commercially.

REFERENCES

FIGURE 3: Gamma scintigraphy dynamic study shows that plain eye drop formulation designed in *in situ* gel formulation of Sparfloxacin improves rate of drug release and prolong contact time of drug at the corneal surface. Adapted from Himanshu Gupta et al.,(2015).

FIGURE 4: Development of *in vitro* hydrogel with *in situ* gels and artificial tear fluid using gellan gum as polymer adapted from Lina Zhu et al. (2015).

TABLE 1: Dosage forms, Benefit and Drawback of ocular conventional dosage forms adapted from Suryawanshi et al. (2012).

<table>
<thead>
<tr>
<th>DOSAGE FORMS</th>
<th>BENEFITS</th>
<th>DRAWBACKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>• Easy to administer.</td>
<td>• Short acting. • Rapid nasolacrimal drainage. • Frequent instillation. • Poor pre-corneal penetration. • Loss of drug by drainage.</td>
</tr>
<tr>
<td>Ointment</td>
<td>• Prolong drug release. • Enhances drug stability.</td>
<td>• Blurred vision. • Sticking of eyelids. • Discomfort. • Low patient compliance. • Limited drug choice depends on partition coefficient. • Greasy preparation</td>
</tr>
<tr>
<td>Suspension</td>
<td>• Great for drug with slow dissolution.</td>
<td>• Loss of drug in solution and suspended solid.</td>
</tr>
<tr>
<td>Emulsion</td>
<td>• Prolong drug release from the vehicle.</td>
<td>• Oil entrapment. • Low patient compliance. • Blurred vision.</td>
</tr>
<tr>
<td>Gels</td>
<td>Ocular inserts</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Comfortable than ointments.</td>
<td>Sophisticated and prolong delivery system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less affected by nasolacrimal drainage.</td>
<td></td>
</tr>
<tr>
<td>Matted eyelids.</td>
<td>Low patient compliance.</td>
<td></td>
</tr>
<tr>
<td>No rate controlling of drug diffuse.</td>
<td>Discomfort.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abrasion while application.</td>
<td></td>
</tr>
</tbody>
</table>